

CoE-Mass weekly seminar series

THE DST-NRF CENTRE OF EXCELLENCE IN MATHEMATICAL AND STATISTICAL SCIENCES (CoE-MaSS) WOULD LIKE TO PRESENT A SEMINAR BY

Prof Charles Swartz

(New Mexico State University)

"The Orlicz-Pettis Theorem for Multiplier Convergent Series

Friday, 26 May 2017 10h30-11h30

Broadcast live from:

Videoconferencing Facility, 1st Floor Mathematical Sciences Building, Wits West Campus

How to connect to this seminar remotely:

You can connect remotely via Vidyo to this research seminar by clicking on this link: http://wits-vc.tenet.ac.za/flex.html?roomdirect.html&key=y0SSOwFsvsidbzg4qFdWXvvQtyl and downloading the Vidyo software before the seminar.

You must please join in the virtual venue (called "CoE Seminar Room (Wits)" on Vidyo) strictly between 10h00-10h15. No latecomers will be added.

Important videoconferencing netiquette:

Once the seminar commences, please mute your own microphone so that there is no feedback from your side into the virtual room. During the Q&A slot you can then unmute your microphone if you have a question to ask the speaker.

Title:

The Orlicz-Pettis Theorem for Multiplier Convergent Series

Presenter:

Charles Swartz
New Mexico State University
Swartz Charles <cswartz@nmsu.edu>

Abstract:

An Orlicz-Pettis Theorem is a result which asserts that a series in a topological vector space which converges in a weak topology converges in a stronger topology. The original Orlicz-Pettis Theorem asserts that a series in a normed space which is subseries convergent in the weak topology is subseries convergent in the norm topology. We consider versions of the Orlicz-Pettis Theorem for multiplier convergent series.. If λ is a scalar sequence spaces and Z is a topological vector space a series $\sum_{j} z_{j} \ln Z$ is λ multiplier convergent if the series $\sum_{j} 1^{n} \sqrt{\infty} t_{j} z_{j} \cos Z$ converges in Z for every $z_{j} \in \lambda$. For example, if $z_{j} \in \lambda$ for example, if $z_{j} \in \lambda$ for example, if the series is subseries convergent. We consider conditions on the multiplier space $z_{j} \in \lambda$ which guarantee that a series which is $z_{j} \in \lambda$ multiplier convergent in the weak topology of a locally convex space is $z_{j} \in \lambda$ multiplier convergent in some stronger topology such as the Mackey topology.